Home
Class 12
MATHS
The domain of the function f(x)=(1)/(sqr...

The domain of the function `f(x)=(1)/(sqrt({x}))-ln(x-2{x})` is (where `{.}` denotes the fractional part function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt(log_(10)x)) is

The domain of definition of the function f(x)=ln{x}+sqrt(x-2{x}) is: (where { } denotes fractional part function) (A) (1,oo) (B) (0,oo) (C) (1,oo)~I^(+) (D) None of these

The domain of function f(x)=ln(ln((x)/({x}))) is (where { ) denotes the fractional part function)

" 4.The domain of the function "f(x)=(1)/(sqrt({sin x}+{sin(pi+x)}))" where "{" -} denotes the fractional part,is "

The domain of the function f(x)=log_(e)((1)/(sqrt(|x|-x))) is

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

The domain of the function f(x)=sqrt(log_(x^(2)-1)x) is