Home
Class 12
MATHS
Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) ...

Let `f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3)))` and `g(x)` be the inverse of `f(x)`. Then the value of `4 (g''(x))/(g(x)^(2))` is________.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) andg(x) be the inverse of f(x). Then the value of 4(g'(x))/((g(x))^(2))is_(--)

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then,the value of g'(x) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4)) and g be the inverse of f. Then , the value of g'(0) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f then the value of g^(')(0) is

Let f(x)=int_(4)^(x)(dt)/(sqrt(1+t^(3))) and g be the inverse of f ,then the value of g'(0) is equal to

Let f(x)=int_(x)^(3)(dt)/(sqrt(1+t^(5))) and g be the inverse of f. Then the value of g'(0) is equal to

If f(x)=2x+tan x and g(x) is the inverse of f(x) then value of g'((pi)/(2)+1) is

Let f(x)=x^(3)+3x+2 and g(x) is inverse function of f(x) then the value of g'(6) is

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is