Home
Class 12
MATHS
If z is a complex number lying in the fo...

If `z` is a complex number lying in the fourth quadrant of Argand plane and `|[k z//(k+1)]+2i|>sqrt(2)` for all real value of`k(k!=-1),` then range of `"a r g"(z)` is `(pi/8,0)` b. `(pi/6,0)` c.`(pi/4,0)` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If z is a complex number lying in the fourth quadrant of Argand plane and |[(kz)/(k+1)]+2i|>sqrt(2) for all real value of k(k!=-1), then range of "a r g"(z) is (pi/8,0) b. (pi/6,0) c. (pi/4,0) d. none of these

If z is a complex number lying in the fourth quadrant of the Argand plane and |(kz)/(k+1) + 2i|gt sqrt2 for all real values of k ( k ne -1) the find the range of arg (z)

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

Find the complex number z if arg (z+1)=(pi)/(6) and arg(z-1)=(2 pi)/(3)

Let w(Im w!=0) be a complex number.Then the set of all complex numbers z satisfying the equal w-bar(w)z=k(1-z), for some real number k,is :

If z=(1+2i)/(1-(1-i)^(2)), then arg (z) equals a.0 b.(pi)/(2) c.pi d .non of these

If sin theta=K,-1<=K<=1 then number of values of theta for same value of K in [0,2 pi]

If (|2z - 3|)/(|z-i|)= k is the equation of circle with complex number 'I' lying inside the circle, find the values of K.