Home
Class 12
MATHS
Solve the equation sqrt(|s in^(-1)|"cos"...

Solve the equation `sqrt(|s in^(-1)|"cos"||+|cos^1|sinx||)=sin^(-1)|cosx|-cos^(-1)|sinx|,(-pi)/2lt=xlt=pi/2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation sqrt(|sin^(-1)|cos x||+|cos^(-1)|sin x||)=sin^(-1)|cos x|-cos^(-1)|sin x|,(-pi)/(2)<=x<=(pi)/(2)

Simplify tan^(-1).(cosx/(1-sinx))(-pi)/2 lt x lt pi/2

Solve the equation (sinx+cosx)^(1+sin2x)=2, when 0lt=xlt=pi

tan^(-1)((cosx+sinx)/(cos x-sinx))

Solve cos2xgt|sinx|,x in(-(pi)/(2),pi)

Solve cos^(-1)(cosx)>sin^(-1)(sinx),x in [0,2pi]

Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

Number ofsolution(s) ofthe equation cos^(-1)sqrt(x)-sin^(-1)sqrt(x-1)+cos^(-1)sqrt(1-x)-sin^(-1)((1)/(sqrt(x)))=(pi)/(2)

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

The area bounded by the curve y=|cos^(-1)(sinx)|-|sin^(-1)(cosx)| and axis from (3pi)/(2)lex le 2pi