Home
Class 12
MATHS
The value of tan^(-1)((1)/(sqrt(2)))-tan...

The value of `tan^(-1)((1)/(sqrt(2)))-tan^(-1)((sqrt(5-2sqrt(6)))/(1+sqrt(6)))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (2tan^(-1)((1)/(sqrt(3)))+cos(tan^(-1)(2sqrt(2)))

tan^(-1)((sqrt(2)+1)/(sqrt(2)-1)) - tan^(-1)(sqrt(2)/2) =

The value of tan(1/2 cos^(-1)'2/(sqrt(5))) is

tan(2tan^(-1)((sqrt(5)-1)/(2)))=

the value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to:

The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6))) is

The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3)))))) is

Find the value of tan((1)/(2)cos^(-1)((sqrt(5))/(3)))

Find the value of : tan^(-1) ((-1)/(sqrt(3)))+cos^(-1)((-sqrt(3))/2)+sin^(-1)(1/2)

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is