Home
Class 12
MATHS
If the primitive of (1)/(f(x)) is equal ...

If the primitive of `(1)/(f(x))` is equal to `log{f(x)}^(2)+C`, then f(x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/(f(x)) is a anti-derivative of log[f(x)]^(2)+c then f(x)=...

If the primitive of (1)/((e^(x)-1)^(2)) is f(x)-log g(x)+c then

If int (1)/(f(x))dx=log [ f(x)]^(2)+c , then f(x) is equal to:

If int(dx)/(f(x)) = log {f(x)}^(2) + c , then what is f(x) equal to ?

If int(dx)/(f(x))=log{f(x)}^(2)+c , then what is f(x) equal to ?

int (f'(x))/( f(x) log(f(x)))dx is equal to

If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)}^2 (b) {f(x)}^3 (c) 2 f(x) (d) 3f(x)