Home
Class 12
MATHS
|||x-2|-2|-2|=2...

`|||x-2|-2|-2|=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2)-2|x|)(|2x|-2)-9((2|x|-2)/(x^(2)-2|x|)) le0 then

If |x^2-2x+2|-|2x^2-5x+2|=|x^2-3x| then the set of values of x is

If |x^2-2x+2|-|2x^2-5x+2|=|x^2-3x| then the set of values of x is

If |x^2-2x+2|-|2x^2-5x+2|=|x^2-3x| then the set of values of x is

If |x^2-2x+2|-|2x^2-5x+2|=|x^2-3x| then the set of values of x is

Solve for x in 2^(2x-2)/(2^(3x-2))=2^(-2)

A movable parabola touches the x and the y-axes at (1,0)a n d(0,1) . Then the locus of the focus of the parabola is 2x^2-2x+2y^2-2y+1=0 b. x^2-2x+2y^2-2y+1=0 c. 2x^2-2x+2y^2+2y+2=0 d. 2x^2-2x-2y^2-2y-2=0

5^(13-2x)+2^(x-2)= 2^(x+2)+5^(11-2x)

The locus of the foot of perpendicular drawn from the centre of the ellipse x^2+""3y^2=""6 on any tangent to it is (1) (x^2-y^2)^2=""6x^2+""2y^2 (2) (x^2-y^2)^2=""6x^2-2y^2 (3) (x^2+y^2)^2=""6x^2+""2y^2 (4) (x^2+y^2)^2=""6x^2-2y^2

The locus of the foot of perpendicular drawn from the centre of the ellipse x^2+""3y^2=""6 on any tangent to it is (1) (x^2-y^2)^2=""6x^2+""2y^2 (2) (x^2-y^2)^2=""6x^2-2y^2 (3) (x^2+y^2)^2=""6x^2+""2y^2 (4) (x^2+y^2)^2=""6x^2-2y^2