Home
Class 12
MATHS
underset(n to oo)lim {1/2+1/2^(2)+1/2^(3...

`underset(n to oo)lim {1/2+1/2^(2)+1/2^(3)+...+1/2^(n)}=`

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(n to oo)lim (2^(n)-1)/(3^(n)+1)=

underset(n to oo)lim (2^(1//n)-1)/(2^(1//n)+1)=

underset(n to oo)lim (1+2+3+...+n)/(n^(2))=

underset(n to oo)lim 1/n^(4) [1^(2)+(1^(2)+2^(2))+....+(1^(2)+2^(2)+...+n^(2)]=

underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is equal to

underset(n to oo)lim {(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))}=

underset(n to oo)lim (1^(2)+2^(2)+3^(2)+...+n^(2))/(n^(3))=

Evaluate : underset(n to oo) lim[((1+1^(2)/n^(2)))(1+(2^(2))/(n^(2)))(1+(3^(2))/(n^(2)))…(1+(n^(2))/(n^(2)))]^((1)/(n))

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

underset(n to oo)lim (1^(3)+2^(3)+3^(3)+...+n^(3))/(n^(4))=