Home
Class 12
MATHS
5. Ir a..y are the roots oftax+b=0 then ...

5. Ir a..y are the roots oftax+b=0 then the valueo2) 0-36

Promotional Banner

Similar Questions

Explore conceptually related problems

la B25. If , .y are the roots of r + ar? +b=0 then the value of B T al is2) a²-364) a? - 36

If x and y are the roots of the equations x^(2)+bx+1=0 then the value of (1)/(x+b)+(1)/(y+b) is

The abscissa of A and B are the roots of the equation x^(2) + 2ax -b^(2) =0 and their ordinates are the roots of the equation y^(2) + 2py -q^(2) = 0. The equation of the circle with AB as diameter is

The abscisae of A and B are the roots of the equation x ^(2) + 2ax -b ^(2) =0 and their ordinates are the roots of the equation y ^(2) + 2 py -q ^(2) =0. The equation of the circle with AB as diameter is

The abscisae of A and B are the roots of the equation x ^(2) + 2ax -b ^(2) =0 and their ordinates are the roots of the equation y ^(2) + 2 py -q ^(2) =0. The equation of the circle with AB as diameter is

The abscisae of A and B are the roots of the equation x ^(2) + 2ax -b ^(2) =0 and their ordinates are the roots of the equation y ^(2) + 2 py -q ^(2) =0. The equation of the circle with AB as diameter is

If the abscissae of points A, B are the roots of the equation x^(2) + 2ax -b^(2) =0 and ordinates of A, B are roots of y^(2) + 2py -q^(2) =0 , then find the equation of the circle for which AB is a diameter.

The abscissa of two points A and B are the roots of the equation x^(2)+2ax-b^(2)=0 and their ordinates are the roots of y^(2)+2py-q^(2)=0 then the distance AB in terms of a,b,p,q is

Let x_(1),x_(2) are the roots of the quadratic equation x^(2) + ax + b=0 , where a,b, are complex numbers and y_(1), y_(2) are the roots of the quadratic equation y^(2) + |a|yy+ |b| = 0 . If |x_(1)| = |x_(2)|=1 , then prove that |y_(1)| = |y_(2)| =1

Let x_(1),x_(2) are the roots of the quadratic equation x^(2) + ax + b=0 , where a,b, are complex numbers and y_(1), y_(2) are the roots of the quadratic equation y^(2) + |a|yy+ |b| = 0 . If |x_(1)| = |x_(2)|=1 , then prove that |y_(1)| = |y_(2)| =1