Home
Class 12
MATHS
If in a !ABC , cosA=(sinB)/(2sinC) then ...

If in a `!ABC , cosA=(sinB)/(2sinC)` then the `!ABC` , is

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle ABC , cosA=(sinB)/(2sinC) then the triangle ABC , is

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

In DeltaABC , if cosA=(sinB)/(2sinC) then show that DeltaABC is an isoscles triangle.

In triangleABC if cosA=sinB/sinC then the triangle is

In /_\ABC .if cos A=(sinB)/(sinC) ,then show that the triangle is right angles triangle.

If in a triangle ABC, 2cosA=sinBcosecC , then :