Home
Class 12
MATHS
Let A=[(1, sintheta, 1),(-sintheta, 1, s...

Let `A=[(1, sintheta, 1),(-sintheta, 1, sintheta),(-1, -sintheta, 1)], thetaepsilon((3pi)/4, (5pi)/4),` then `|A|` lies in (A) `[1/2,3)` (B) `[1,4)` (C) `[-1,2]` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)] , then for all thetain ((3pi)/(4),(5pi)/(4)) , det. (A) lies in the interval

If Delta=|{:(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1):}|"prove that" 2lt=Deltalt=4.

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

Let A=[(1,sintheta, 1),(-sintheta, 1, sintheta),(-1, -sintheta, 1)], where 0lethetalt2pi then (A) |A|=0 (B) |A|epsilon[2,4] (C) |A|epsilon)(0,oo) (D) |A|epsilon(2,oo)

If cos^2theta-sintheta=1/4 then sintheta=?

sqrt((1+sintheta)/(1-sintheta)) = __.

((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?