Home
Class 12
MATHS
The value of int1^e((x/e)^(2x)+(e/x)^x)l...

The value of `int_1^e((x/e)^(2x)+(e/x)^x)log_ex dx` is equal to (A) `e-1/(2e^2)-1/2` (B) `e-1/(2e^2)+1/2` (C) `e^3-1/(2e^2)-1/2` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(e)(((x)/(e))^(2x)+((e)/(x))^(x))log_(e)xdx is equal to (A)e-(1)/(2e^(2))-(1)/(2)(B)e-(1)/(2e^(2))+(1)/(2)(C)e^(3)-(1)/(2e^(2))-(1)/(2)(D) none of these ^(2)

The integral int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x dx is equal to

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

int_(-1)^(1)(e^(x)+e^(-x))/(2(1+e^(2x)))dx is equal to

The intergral int_(1)^(2) e^(x) . X^(2) (2 + log_(e)x) dx equals "

int((e^(2x))/(e^(2x)-1))dx=

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int1/((e^(2x)+e^(-2x))^(2))dx=

int(e^(2x)+1)/(e^(2x)-1)dx=