Home
Class 12
MATHS
For x in R-{0,1}, " let " f(1)(x)=(1)/(x...

For `x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x)` be three given functions. If a function, J(x) satisfies `(f_(2) @J@f_(1))(x)=f_(3)(x), " then " J(x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

For x in R-{0,1}, let f_(1)(x)=(1)/(x),f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x) be three given functions.If a function,J(x) satisfies (f_(2)oJof_(1))(x)=f_(3)(x) then J(x) is equal to

For x in R-{0,1}, let f_(1)(x)=(1)/(x),f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x) be three given functions.If a function,J(x) satisfies (f_(2)oJ_(o)f_(1))(x)=f_(3)(x) then J(x) is equal to:

For x in RR - {0, 1}, let f_1(x) =1/x, f_2(x) = 1-x and f_3(x) = 1/(1-x) be three given functions. If a function, J(x) satisfies (f_2oJ_of_1)(x) = f_3(x) then J(x) is equal to :

For x in RR - {0, 1}, let f_1(x) =1/x, f_2(x) = 1-x and f_3(x) = 1/(1-x) be three given functions. If a function, J(x) satisfies (f_2oJ_of_1)(x) = f_3(x) then J(x) is equal to :

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If the function f(x) satisfies lim_(x to 1) (f(x)-2)/(x^(2)-1)=pi , then lim_(x to 1)f(x) is equal to