Home
Class 11
MATHS
(1/(sec^2A-cos^2A)+1/(cosec^2A-sin^2A))s...

`(1/(sec^2A-cos^2A)+1/(cosec^2A-sin^2A))sin^2Acos^2A=(1-sin^2Acos^2A)/(2+sin^2Acos^2A)`

Text Solution

Verified by Experts

LHS
`=(1/(1/cos^2A -cos^2A) + 1/(1/sin^2A - Sin^2A))sin^2A.cos^2A`
`=(cos^2A/(1-cos^4A) + sin^2A/(1- Sin^4A))sin^2Acos^2A`
`=((cos^2A)/((1-cos^2A)(1+cos^2A)) + (sin^2A)/((1-sin^2A)(1+sin^2A)))sin^2Acos^2A`
`= (cos^2Asin^2Acos^2A)/(sin^2A(1+cos^2A)) + (sin^2A sin^2Acos^2A)/(cos^A(1+sin^2A))`
`= cos^4A/(1+ cos^2A) + sin^4A/(1+sin^2A)`
`= (cos^4A(1+sin^2A) + sin^4A(1+ cos^2A))/((1+cos^2A)(1+sin^2A))`
`= (cos^4A + sin^2A.cos^4A + sin^4A + sin^4Acos^2A)/(1 + cos^2A + sin^2A + sin^2Acos^2A)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: [1/(sec^(2)A-cos^(2)A)+1/("cosec"^(2)A-sin^(2)A)].sin^(2)A.cos^(2)A=(1-sin^(2)Acos^(2)A)/(2+sin^(2)Acos^(2)A)

sin^4A-cos^4A=2sin^2A-1=1-2cos^2A=sin^2A-cos^2A

Prove that (sin^2A)/(cos^2A)+(cos^2A)/(sin^2A)=1/(sin^2Acos^2A)-2 .

Prove: sin^2Acos^2B-cos^2Asin^2B=sin^2A-sin^2B

Show that (i) sin^(8)A-cos^(8)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A.cos^(2)A)

Prove that (1/(sec^2theta-cos^2theta)+1/(cosec^2-sin^2theta))sin^2thetacos^2theta=(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta

Prove that cos^4A+sin^4A+2sin^2Acos^2A=1

Prove the following identities: tan^2A-tan^2B=(cos^2B-cos^2A)/(cos^2Bcos^2A)=(sin^2A-sin^2B)/(cos^2Acos^2B) (sinA-sinB)/(cosA+cosB)+(cosA-cosB)/(sinA+sinB)=0

Prove that: ((1) / (sec ^ (2) A-cos ^ (2) A) + (1) / (cos ec ^ (2) A-sin ^ (2) A)) sin ^ (2) A cos ^ (2) A = (1-sin ^ (2) A cos ^ (2) A) / (2 + sin ^ (2) A cos ^ (2) A)

sin^(6)A + cos^(6)A + 3sin^(2)A.cos^(2)A=