Home
Class 12
MATHS
If A, B, C are angles of a triangle , ...

If `A, B, C ` are angles of a triangle , prove that ` cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C `

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C

If A + B + C =pi , prove that : cos 2A - cos 2B + cos 2C= 1-4 sin A cos B sin C .

IF A,B,C are angles of a triangle , Prove that cos2A+cos 2B+cos 2C=-4cosAcosBcosC-1

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C

If A, B, C are angles in a triangle , then prove that cos^(2)A+cos^(2)B-cos^(2)C=1-2sin Asin Bcos C.

In a triangleABC, prove that a cos A+b cos B+c cos C=2a sin B sin C

If A + B + C =pi , prove that : cos 2A - cos 2B- cos 2C= -1+4 cos A sinB sin C .

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C

If A + B + C =pi , prove that : cos 2A + cos 2B -cos 2C= 1-4sin A sin B cos C .