Home
Class 9
MATHS
Calculate : {((9^(n+(1)/(4)))sqrt(3.3^n)...

Calculate : `{((9^(n+(1)/(4)))sqrt(3.3^n))/(3sqrt(3^(-n)))}^((1)/n)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

(3+sqrt(5))^(n)-3[((3+sqrt(5))^(n))/(3)]

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

For all n in N,1+(1)/(sqrt(2))+(1)/(sqrt(3))+(1)/(sqrt(4))++(1)/(sqrt(n))

Show that (1)/(log_(n)m)+(1)/(log_(sqrt(n))m)+(1)/(log_(3sqrt(n))m(1)/(4))+......(1)/(log_(10sqrt(n))m)=log_(m)n^(55)

Simplify: (3^(n+1))/(3^(n(n-1)))-:(9^(n+1))/((3^(n+1))^((n-1)))

lim_(nrarroo) [(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]

underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]

Lt_(n rarr oo)[(sqrt(n))/(sqrt(n^(3)))+(sqrt(n))/(sqrt((n+4)^(3)))+....+(sqrt(n))/(sqrt([n+4(n-1)]^(3)))]