Home
Class 12
MATHS
" Solve "cot^(-1)x+sin^(-1)(1)/(sqrt(5))...

" Solve "cot^(-1)x+sin^(-1)(1)/(sqrt(5))=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x : cot^(-1)x + sin^(-1)(1/sqrt(5)) = pi/4

Solve for x : cot^(-1)x+ sin^(-1)( 1/sqrt(5)) = pi/4

Prove: sin^(-1)((1)/(sqrt(5)))+cot^(-1)3=(pi)/(4)

4(cot^(-1)3+csc^(-1)sqrt(5))=pi

4(cot ^(-1)3+"cosec"^(-1) sqrt(5))=pi

cot((sin^(-1)1)/(sqrt(5))+(sin^(-4)2)/(sqrt(5)))

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is