Home
Class 9
MATHS
4^(2x-1)-16^(x-1)=384...

`4^(2x-1)-16^(x-1)=384`

Promotional Banner

Similar Questions

Explore conceptually related problems

16. "4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1).

Solve the equation 16xx4^(x+2)-16xx2^(x+1)+1=0 .

(2^(x-1)*4^(x+1))/(8^(x-1))=16

Show that (16(32^(x))-2^(3x-2)*4^(x+1))/(15*2^(x-1)*16^(x))-(5*5^(x-1))/(sqrt(5^(2x))) is given

The value of k for which f(x)={{:(,(x^(2^(32))-2^(32)x+4^(16)-1)/((x-1)^(2)),x ne 1),(,k,x=1):} is continuous at x=1, is

The value of k for which f(x)={{:(,(x^(2^(32))-2^(32)x+4^(16)-1)/((x-1)^(2)),x ne 1),(,k,x=1):} is continuous at x=1, is

Simplify: (x-y)(x+y)x^(2)+y^(2))(x^(4)+y^(5))2x-1)(2x+1)(4x^(2)+1)(16x^(4)+1)(7m-8n)^(2)+(7m+8n)^(2)

Solve (2^(x)+2^(-x))/(2^(x)-2^(-x))=(16^(1/x)+16^(-1/x))/(16^(1/x)-16^(-1/x))

If 16x^(2)-p=(4x-(1)/(3))(4x+(1)/(3)) then find the value of p