Home
Class 12
MATHS
Let U=sin^(-1)((2x)/(1+x^2)) and V=tan^(...

Let `U=sin^(-1)((2x)/(1+x^2))` and `V=tan^(-1)((2x)/(1-x^2))` , then `(d U)/(d V)=` (a)`1//2` (b) `x` (c) `(1-x^2)/(1+x^2)` (d) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=sin^(-1)((2x)/(1+x^(2)))andv=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is :

Let U=sin^(-1)((2x)/(1+x^(2))) and V=tan^(-1)((2x)/(1-x^(2))), then (dU)/(dV)=1/2(b)x(c)(1-x^(2))/(1+x^(2))(d)1

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))), where '-1

If u = sin^-1(2x/(1+x)^2) and v = tan^-1(2x/(1-x^2)) , the du/dv is

If u=sin^(-1)((2x)/(1+x^2)) and v=tan^(-1)((2x)/(1-x^2)) , where -1

Differentiate tan^(-1)((2x)/(1 - x^2)) w.r.t. sin^(-1)((2x)/(1 + x^2))

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)((2x)/(1-x^2)),

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).