Home
Class 11
MATHS
[" 8."tan A=a tan B" and "sin A=b sin B ...

[" 8."tan A=a tan B" and "sin A=b sin B rArr(b^(2)-1)/(a^(2)-1)=],[[" 1) "sin^(2)A," 2) "sin^(3)A," 3) "cos^(2)A," 4) "cos^(3)A]]

Promotional Banner

Similar Questions

Explore conceptually related problems

tan A = a tan B, sin A = b sin B rArr (b ^ (2) -1) / (a ^ (2) -1)

If tan A=n tan B and sin A=m sin B, prove that cos^(2)A=(m^(2)-1)/(n^(2)-1)

If tan A = n tan B and sin A = m sin B , show that cos^(2)A= (m^(2)-1)/(n^(2)-1) .

If sin A=a cos B and cos A=b sin B then tan^(2)B =

If tan A = n tan B and sin A = m sin B, prove that : cos^(2) A = (m^(2) - 1)/(n^(2) - 1)

If sin A=a cos B and cos A=b sin B then (a^(2)-1)tan^(2)A+(1-b^(2))tan^(2)B is equal to

(tan A + tan B) / (tan A-tan B) = (sin (A + B)) / (sin (AB))

Prove : (1-cos^(2)A) *sec ^(2)B + tan^(2)B (1- sin^(2)A) = sin^(2) A + tan^(2)B

"Prove that" tan (A+B) - tan (A - B) = (sin2 B)/(cos^(2)B - sin^(2) A).

If tan^(2) A= 2 tan ^(2) B+1, "then " cos 2A + sin^(2)B =