Home
Class 12
MATHS
यदि x^(y)=e^(x-y) हो तो सिद्ध कीजिये ...

यदि `x^(y)=e^(x-y)` हो तो सिद्ध कीजिये की `(dy)/(dx)=(log_(e )x)/(1+log_(e )x)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (d y)/(dx), if y = log_(e)(log_(e)x) .

If x^(y) = e^(x - y) prove that (dy)/(dx) = (log_(e)x)/((1 + log_(e)x)^(2)) .

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If x ^(y) = e ^( x -y) , then show that (dy)/(dx) = (log x )/( (1 + log x ) ^(2))

If x^(y) = a^(x) , prove that (dy)/( dx) = ( x log _(e) a -y)/( x log_(e) x)

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^y = e^(x + y) , show that (dy)/(dx) = (log x - 2)/((1 - log x)^2)

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))