Home
Class 12
MATHS
Show that two matrices A=[(1,-1,0),(2,...

Show that two matrices
`A=[(1,-1,0),(2,1,1)]` and `B=[(3,0,1),(0,3,1)]` are row equivalent.

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the matrices A = [(1,0,2),(0,2,3)] and B = [(3,5,0,7), (0, -1, 8 ,1)] Find the sum of A and B.

If A=[(1,0),(1,1)], B=[(2,0),(1,1)] and C=[(-1,2),(3,1)], show that

Let A and B be two matrices such that A=[{:(2,1),(-1,0),(2,5):}]andB=[{:(-1,2),(0,-1),(3,2):}] Verify the result 3(A+B)=3A+3B

Of the matrices A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] Find AB , B^T , (AB)^T

Show that the points (0,-1,0),(2,1,-1),(1,1,1),(3,3,0) are coplanar.

Show that the points (0, -1, 0), (2,1,-1), (1,1,1), (3,3,0) are coplanar.

If the matrices A = [{:(2,1,3),(4,1,0):}] and B = [{:(1,-1),(0,2),(5,0):}] , then (AB)^T will be

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.