Home
Class 12
MATHS
underset( x rarr 1 ) ( "Lim") ( x^(2) - ...

`underset( x rarr 1 ) ( "Lim") ( x^(2) - x. ln x + ln x - 1)/( x - 1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate underset( x rarr oo) ( "Lim") x - x^(2) ln ( 1+ ( 1)/( x))

underset( x rarr 2) ( "lim") ( sin ( e^(x-2) - 1))/( ln ( x-1))=

The value of underset( x rarr 0 ) ( "Lim") ( sin ( ln ( 1+ x)))/( ln ( 1+ sin x )) is

lim_ (x rarr1) (x ^ (2) -x * ln x + ln x-1) / (x-1)

Evaluate underset( x rarr oo) ( "lim") ( pi - 2 tan^(-1) x ) ln x

underset (x rarr infty) lim(log x^(x))/(x)

Evaluate : underset( x rarr0 ) ("lim") ( sqrt( ( 1+sin 3x))-1)/(ln ( 1+ tan 2x))

underset(x rarr0)(lim) (log_(e) (1+x))/(3^(x)-1)=

Evaluate the following limits : Lim_(x to 1) (x^(2) - x log x + log x - 1)/(x-1)