Home
Class 12
MATHS
" 2.Let "f:[0,oo)rarr R" be a continuous...

" 2.Let "f:[0,oo)rarr R" be a continuous and strictly increasing function such that "f^(3)(x)=int_(0)^(1)tf^(2)(t)dt,AA x>0," then the area enclosed by "y=f(x)," the "x" -axis and the ordinate at "x=3" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f"[0,oo)rarr R be a continuous and stricity increasing function such that f^(3) (x) =int_(0)^(x) tf^(2)(t) dt, x ge0 . The area enclosed by y = f(x) , the x-axis and the ordinate at x = 3 is "_______"

Let f":[0,oo)rarr R be a continuous and stricity increasing function such that f^(3) (x) =int_(0)^(x) tf^(2)(t) dt, x ge0 . The area enclosed by y = f(x) , the x-axis and the ordinate at x = 3 is "_______" (a) 3/2 (b) 5/2 (c) 7/2 (d) 1/2

Let f:[0,oo)rarr R be a continuous strictly increasing function,such that f^(3)(x)=int_(0)^(x)t*f^(2)(t)dt for every x>=0. Then value of f(6) is

Let f:[0,oo)->R be a continuous strictly increasing function, such that f^3(x)=int_0^x t*f^2(t)dt for every xgeq0. Then value of f(6) is_______

Let f:[0,oo) to R be a continuous strictly increasing function, such that f^3(x)=int_0^x tdotf^2(t)dt for every xgeq0. Then value of f(6) is_______

Let f:[0,oo) to R be a continuous strictly increasing function, such that f^3(x)=int_0^x tdotf^2(t)dt for every xgeq0. Then value of f(6) is_______

Let f:[0,oo)vecR be a continuous strictly increasing function, such that f^3(x)=int_0^x tdotf^2(t)dt for every xgeq0. Then value of f(6) is_______

If f(x)=int_(0)^(x)tf(t)dt+2, then

Let f:(0,oo)R be a continuous,strictly increasing function such that f^(3)(x)=int_(0)^(0)tf^(2)(t)dt. If a normal is drawn to the curve y=f(x) with gradient (-1)/(2), then find the intercept made by it on the y-axis is 5(b)7(c)9(d)11

Let f:R rarr R be a differentiable and strictly decreasing function such that f(0)=1 and f(1)=0. For x in R, let F(x)=int_(0)^(x)(t-2)f(t)dt