Home
Class 12
MATHS
The value of 3(cos theta-sin theta)^(4)+...

The value of `3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta` is where `theta in ((pi)/(4),(pi)/(2))` (a) `13-4cos^(4) theta` (b) `13-4cos^(6) theta` (c) `13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta` (d) `13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve cos^(4)theta-sin^(4)theta=cos^2theta

(((cos theta+sin theta)^(4)-(cos theta-sin theta)^(4))/(sin theta cos theta))=?

1-8 cos ^(2) theta + 8 cos ^(4) theta= A) sin 4 theta B) cos 4 theta C) sin ^(4) theta + cos ^(4) theta D) sin ^(4) theta - cos ^(4) theta

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

Prove that: 3(sin theta-cos theta)^(4)+6(sin theta+cos theta)^(2)+4(sin^(6)theta+cos^(6)theta)-13=0

(sin ^ (4) theta + cos ^ (4) theta) / (1-2sin ^ (2) theta cos ^ (2) theta) = 1

The greatest value of (2sin theta+3cos theta+4)^(3).(6-2sin theta-3cos theta)^(2) , as theta in R , is

The value of (sin2 theta+sin4 theta)/(1+cos2 theta+cos4 theta) is equal to