Home
Class 12
MATHS
If I=int (((sinx)^n-sinx^(1/n))/((sinx)...

If `I=int (((sinx)^n-sinx^(1/n))/((sinx)^(n+1) cosx)) dx` is eqaul to (a) `(n/(n^2-1))(1-1/(sinx^(n-1)))^(1/n+1)+c` (b) `(n/(n^2+1))(1-1/(sinx^(n-1)))^(1/n+1)+c` (c) `(n/(n^2+1))(1-1/(sinx^(n-1)))^(1/n)+c` (d) `(n/(n^2-1))(1-1/(sinx))^(1/n+1)+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

((n+2)!+(n+1)(n-1)!)/((n+1)(n-1)!)=

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

(d^(n))/(dx^(n))(log x)=(a)((n-1)!)/(x^(n))(b)(n!)/(x^(n))(c)((n-2)!)/(x^(n))(d)(-1)^(n-1)((n-1)!)/(x^(n))

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_(n)=int(sinx+cosx)^(n) dx, snd I_(n)=1/n(sinx+cosx)^(n-1)(sinx-cosx)+(2k)/(n) I_(n-2) then k=

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

The value of sum_(r=0)^(n)(a+r+ar)(-a)^(r) is equal to (-1)^(n)[(n+1)a^(n+1)-a]b(-1)^(n)(n+1)a^(n+1) c.(-1)^(n)((n+2)a^(n+1))/(2)d(-1)^(n)(na^(n))/(2)

Let f(n)=1+(1)/(2)+(1)/(3)++(1)/(n). Then f(1)+f(2)+f(3)+f(n) is equal to (a) nf(n)-1( b) (n+1)f(n)-nn(c)(n+1)f(n)+n(d)nf(n)+n

Q.prove that int(e^(n+(1)/(n))+n(1-(1)/(n^(2)))*e^(n+(1)/(n)))dn=n*e^(n+(1)/(n))+C