Home
Class 12
MATHS
lim(xrarr1^+) ((1-|x|-sin|1-x|)(sin pi/2...

`lim_(xrarr1^+) ((1-|x|-sin|1-x|)(sin pi/2[1-x]))/((1-|x|).([1-x]))`, where `[.]` is greatest integer function is equal top (a) `1` (b) `2` (c) `3` (d) `4`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr2)(-1)^([x]), where [x] is the greatest integer function,is equal to

lim_(x rarr2)(-1)^([x]), where [x] is the greatest integer function,is equal to

lim_(x rarr0)[1+[x]]^((2)/(x)), where [:] is greatest integer function,is equal to

lim_(x rarr1^(-1))([x])^(1-x) where [.] denotes greatest integer function

lim_(x rarr1)(x sin(x-[x]))/(x-1) ,where [.]denotes the greatest integer function, is

lim_(x rarr1)(1-x+[x-1]+[1-x])= where [.] denotes the greatest integer function

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

lim_(x rarr1)[csc(pi x)/(2)]^((1)/((1-x))) (where [.] represents the greatest integer function) is equal to

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is