Home
Class 12
MATHS
Let I=inta^b (x^4−2x^2)dx for (a,b) whic...

Let `I=int_a^b (x^4−2x^2)dx` for `(a,b)` which given integration is minimum `(b > 0)` (a) `(sqrt2,-sqrt2)` (b) `(0,sqrt2)` (c) `(-sqrt2,sqrt2)` (d) `(sqrt2,0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I=int_(a)^(b)(x^(4)-2x^(2))dx for (a,b) which given integration is minimum (b>0)(a)(sqrt(2),-sqrt(2))(b)(0,sqrt(2))(c)(-sqrt(2),sqrt(2))(d)(sqrt(2),0)

Which of the following is irrational? (a) (2-sqrt3)2 (b) (sqrt2+sqrt3)2 (c) (sqrt2-sqrt3)(sqrt2+sqrt3) (d) (2sqrt7)/7

int sqrt(x^(2)+b^(2))dx

(sqrt8)^(1/3) = ? (a) 2 (b) 4 (c) sqrt2 (d) 2sqrt2

Tangents are drawn to x^2+y^2=16 from P(0,h). These tangents meet x-axis at A and B.If the area of PAB is minimum, then value of h is: (a) 12sqrt2 (b) 8sqrt2 (c) 4sqrt2 (d) sqrt2

int_0^(sqrt(2)) [x^2] dx is equal to (A) 2-sqrt(2) (B) 2+sqrt(2) (C) sqrt(2)-1 (D) sqrt(2)-2

int_(0)^(1/sqrt2)(dx)/(sqrt(1-x^(2)))

The value of the definite integral int_(0)^(bar(2))sqrt(tan x)dx is sqrt(2)pi(b)(pi)/(sqrt(2))2sqrt(2)pi(d)(pi)/(2sqrt(2))

The value of int_(0)^(sqrt(2))[x^(2)]dx ,where [.] is the greatest integer function (A) 2-sqrt(2) (B) 2+sqrt(2) (C) sqrt(2)-1 (D) sqrt(2)-2

The value of the integral int_0^(100pi) sqrt(1-cosx)dx is equal to (A) 300sqrt(2) (B) 200sqrt(2) (C) 400sqrt(2) (D) 500sqrt(2)