Home
Class 12
MATHS
If range of y=x/(1+x^2),AAxepsilonR is e...

If range of `y=x/(1+x^2),AAxepsilonR` is equal to (A) `[-1,1]` (B) `[-1/2, 1/2]` (C) `R-[-1/2,1/2]` (D) `R-[-1,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If range of y=(x)/(1+x^(2)),AA x varepsilon R is equal to (A)[-1,1](B)[-(1)/(2),(1)/(2)](C)R-[-(1)/(2),(1)/(2)] (D) R-[-1,1]

Let f: R to R be defined by f(x)=(x)/(1+x^(2)), x in R. Then, the range of f is (A) [-(1)/(2),(1)/(2)] (B) (-1,1)-{0} (C) R-[-(1)/(2),(1)/(2)] (D) R-[-1,1]

If (x+(1)/(x))=2, then (x-(1)/(x)) is equal to (a) 0 (b) 1 (c) 2 (d) 5

If the function f: R -{1,-1} to A definded by f(x)=(x^(2))/(1-x^(2)) , is surjective, then A is equal to (A) R-{-1} (B) [0,oo) (C) R-[-1,0) (D) R-(-1,0)

If (1-i)x+(1+i)y=1-3i , then (x,y) is equal to (a) (2,-1) (b) (-2,1) (c) (-2,-1) (d) (2,1)

If (1-i)x+(1+i)y=1-3i , then (x,y) is equal to (a) (2,-1) (b) (-2,1) (c) (-2,-1) (d) (2,1)

For questions 13-14: The accompanying figure shows the graph of a function f(Cr) with domain [O, 2] and range [0, 1] 2 Figure I Figure II Q13) Figure II represents the graph of A. 2f(x) B. f(r-2) C. f(x + 2) D. f (x -2)+ 1 Q14) The domain and range respectively of A. f(-x) are [- 2, 0] and -1,0] B. f(x)-1 are [0, 2] and [0, 1] C. f(x) + 2 are [0, 2] and [1, 2] D. -ft+1)+ 1 are [-1, 1] and [0, 1] x +1+ 1 are

The range of the function f(x)=(x^2-x)/(x^2+2x) is R (b) R-[1] (c) R={-1/2,1} (d) none of these

In a DeltaABC , if r=r_2+r_3-r_1 and Agt pi/3 then range of s/a contains (A) (1/2, 2) (B) [1,2) (C) (1/2, 3) (D) (3,oo)

lim_(x rarr oo)(e^((1)/(2^(2)))-1)/(2tan^(-1)(x^(2))-pi) is equal to (a) 1 (b) -1( c) (1)/(2)(d)-(1)/(2)