Home
Class 12
MATHS
If x satisfies the condition f(x)={x:x^2...

If `x` satisfies the condition `f(x)={x:x^2+3 0le11x}` then maximum value of function `f(x)=3x^3-18x^2-27x-40` is equal to (A) `-122` (B) `122` (C) `222` (D) `-222`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x satisfies the condition f(x)={x:x^(2)+30<=11x} then maximum value of function f(x)=3x^(3)-18x^(2)-27x-40 is equal to (A)-122(B)122(C)222(D)-222

The Minimum value of the function f(x)=x^(3)-18x^(2)+96x in [0,9]

The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the set S={x in R: x^(2)+30 le 11x} is:

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

If f(x)=3x^(3)-9x^(2)-27x+15 ,t hen the maximum value of f(x) is

Find the maximum and minimum values of the function : f(x)=2x^(3)-15x^(2)+36x+11.

Find the greatest and least values of function f(x)=3x^(4)-8x^(3)-18x^(2)+1

If a function f(x) satisfies the relation 3f(x)-5f((2)/(x))=3-x+x^(2)AA x in R-{0} ,then the value of f(1) is equal to