Home
Class 12
MATHS
Let f(x)=f(a-x) and g(x)+g(a-x)=4 then i...

Let `f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx` is equal to (A) `2int_0^af(x)dx` (B) `int_0^af(x)dx` (C) `4int_0^af(x)dx` (D) `0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (d)/(dx)f(x)=g(x), then int f(x)g(x)dx is equal to:

int_0^a f(a-x) dx=

if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx is equal to

If f(x)+f(pi-x)=1 and g(x)+g(pi-x)=1 , then : int_(0)^(pi)[f(x)+g(x)]dx=

int_0^(2a)f(x)dx is equal to 2int_0^af(x)dx b. 0 c. int_0^af(x)dx+int_0^af(2a-x)dx d. int_0^af(x)dx+int_0^(2a)f(2a-x)dx

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

int{f(x)g'(x)-f'g(x)}dx equals

If f(x) = f(a+x) and int_(0)^(a) f(x) dx = k, "then" int _(0)^(na) f(x) dx is equal to