Home
Class 12
MATHS
If z=((sqrt3)/(2)+(1)/(2)i)^5+((sqrt3)/(...

If `z=((sqrt3)/(2)+(1)/(2)i)^5+((sqrt3)/(2)-(i)/(2))^5`, then (a) `im(z)=0` (b) `Re(z)gt0`,`Im(z)gt0` (c) `Re(z)gt0`,`Im(z)lt0` (d) `Re(z)=3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then prove that Im(z)=0

If z=((sqrt(3))/(2)+(i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then prove that Im(z)=0

If z=((sqrt(5))/(2)+(i)/(2))^(5)+((sqrt(5))/(2)-(i)/(2))^(5) , the prove that Im(z)=0 .

If z=((sqrt(3))/(2)+(1)/(2)i)^(5)+((sqrt(3))/(2)-(i)/(2))^(5), then (a) im(z)=0 (b) Re(z)>0,Im(z)>0(c)Re(z)>0,Im(z)<0 (d) Re(z)=3

If z=[((sqrt(3))/(2))+(i)/(2)]^(5)+[((sqrt(3))/(2))-(i)/(2)]^(5) then Re(z)=0 b.Im(z)=0 c.Re(z)>0 d.Re(z)>0,Im(z)<0

If Im((z-i)/(2i))=0 then the locus of z is

|z-i|lt|z+i| represents the region (A) Re(z)gt0 (B) Re(z)lt0 (C) Im(z)gt0 (D) Im(z)lt0

If z = (sqrt(2) - sqrt(-3)) , find Re(z), Im(z), bar(z) and |z| .

If |u|=|v|=1uv!=-1 and z=(u-v)/(1+uv) then (a) |z|=1( b) Re(z)=0 (c) Im(z)=0 (d) Re(z)=Im(z)

if Im((z+2i)/(z+2))= 0 then z lies on the curve :