Home
Class 12
MATHS
If int\ x^5\ e^(-4x^3)dx=(1)/(48)e^(-4x^...

If `int\ x^5\ e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c`, where `c` is constant of intergration then `f(x)` equals to (a) `-4x^3-1` (b) `-1-2x^3` (c) `4x^3+1` (d) `1-2x^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int lambda x^(5)backslash e^(-4x^(3))dx=(1)/(48)e^(-4x^(3))(f(x))+c where c is constant of intergration then f(x) equals to (a)-4x^(3)-1( b) -1-2x^(3)(c)4x^(3)+1(d)1-2x^(3)

If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

If int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If int(dx)/(x^(3)(1+x^(6))^(2//3)) = xf(x)(1+x^(6))^(1//3)+ C Where C is a constant of inergration, then the function f(x) is equal to :-

Let int(x^(2)-1)/(x^(3)sqrt(3x^(4)+2x^(2)-1))dx=f(x)+c where f(1)=-1 and c is the constant of integration.

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to