Home
Class 12
MATHS
Let Sn=1+q+q^2 +?+q^n and Tn =1+((q+1)/2...

Let `S_n=1+q+q^2 +?+q^n` and `T_n =1+((q+1)/2)+((q+1)/2)^2+?+((q+1)/2)^n` If `alpha T_100=^101C_1 +^101C_2 xS_1 +^101C_101 xS_100,` then the value of `alpha` is equal to (A) `2^99` (B) `2^101` (C) `2^100` (D) `-2^100`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S_(n)=1+q+q^(2)+?+q^(n) and T_(n)=1+((q+1)/(2))+((q+1)/(2))^(2)+?+((q+1)/(2)) If alpha T_(100)=^(101)C_(1)+^(101)C_(2)xS_(1)+^(101)C_(101)xS_(100), then the value of alpha is equal to (A) 2^(99)(B)2^(101)(C)2^(100) (D) -2^(100)

Let S_k=1+q+q^2+...+q^k and T_k=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^k q!=1 then prove that sum_(r=1)^(n+1) ^(n+1)C_rS_(r-1)=2^ nT_n

If P = (101)^(100) and Q = (100)^(101) , then the correct relation is:

If the number of terms in the expansion of (1+x)^(101)(1+x^(2)-x)^(100) is n, then the value of (n)/(25) is euqal to

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+ . . . .+(C_(100))/(101) equals

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2) ,then the value of x^(100)+y^(100)+z^(100)+(12)/(x^(101)+y^(101)+z^(101)) is equal to

If .^nC_0+3.^nC_1+5^nC_2+7^nC_3+ . . .till (n+1) term=2^100*101 then the value of 2[(n-1)/2] where [.] is G.I.F)