Home
Class 12
MATHS
Let Delta ABC is (b+c)/11=(c+a)/12=(a+b)...

Let `Delta ABC` is `(b+c)/11=(c+a)/12=(a+b)/12` (where `AB=c,BC=a and AC=b`) and `cosA/alpha=cosB/beta =(cosC)/gamma` then possible ordered tripblet of `(alpha, beta, gamma)` is (A) `(9, 17, 25)` (B) `(19, 7, 25)` (C) `(7, 19, 25)` (D) `(19, 25, 7)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given (b+c)/(11)=(c+a)/(12)=(a+b)/(13) for a DeltaABC with usual notation. If (cos A)/(alpha)=(cos B)/(beta)=(cos C)/(gamma) then the ordered traiad, (alpha,beta,gamma) has a vlaue

Given (b+c)/(11) = (c+a)/(12) = (a+b)/(13) for a Delta ABC with usual notation. If (cos A)/(alpha) = (cos B)/(beta) = (cos C)/(gamma) , then the ordered triad (alpha, beta, gamma) has a value:

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In a Delta ABC,(a+b+c)(b+c-a)=gamma bc if

In DeltaABC, (b+c)/(11) = (c+a)/(12)=(a+b)/(13) , prove that: cosA:cosB:cosC=?

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is

With usual notation, if in a DeltaABC(b+c)/(11)=(c+a)/(12)=(a+b)/(13) , then prove that (cosA)/(7)=(cosB)/(19)=(cosC)/(25)

With usual notatins, if in a Delta ABC,(b+c)/(11)=(c+a)/(12) =(a+b)/(13), then prove that (cos A)/(7) =(cos B)/(19) =(cos C)/(25).

With usual notion,if in triangle ABC ,(b+c)/(11)=(c+a)/(12)=(a+b)/(13), then prove that (cos A)/(7)=(cos B)/(19)=(cos C)/(25)

If origin is the centroid of /_\ABC with the vertices A(alpha, 1,3),B(-2,beta, -5) and C(4,7,gamma) find the value of alpha, beta,gamma