Home
Class 12
MATHS
If Det(A A^T B)=8 and Det(AB^-1)=8, the...

If `Det(A A^T B)=8 and Det(AB^-1)=8`, then the value of `Det(BB^T A^-1)` is equal to (A) 116 (B) 14 (C) 16 (D) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If Det(AA^(T)B)=8 and Det(AB^(-1))=8 then the value of Det(BB^(T)A^(-1)) is equal to (A) 116 (B) 14 (C) 16 (D) 1

If A,B and C are n xx n matrices and det(A)=2,det(B)=3 and det(C)=5 then the value of the det (A^(2)BC^(-1)) is equal to

A square matrix A is invertible iff det (A) is equal to (A) -1 (B) 0 (C) 1 (D) none of these

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A=[{:(2,3),(-1,-2):}] and B=sum_(r=1)^(10)A^r , then the value of det (B)is equal to

If B is a non-singular matrix and A is a square matrix, then the value of det (B^(-1) AB) is equal to :

Let A and B be two invertible matrices of order 3xx3 . If det. (ABA^(T)) = 8 and det. (AB^(-1)) = 8, then det. (BA^(-1)B^(T)) is equal to

Let A and B be two invertible matrices of order 3 xx 3 . If "det"(ABA^(T)) =8 " and det"(AB^(-1)) =8, " then det"(BA^(-1)B^(T)) is equal to

If A is an invertible matrix of order 2 then det (A^(-1)) is equal to (a) det (A) (b) (1)/(det(A))(c)1 (d) 0