Home
Class 12
MATHS
If f(1)=2, f\'(x)=f(x) and h(x)=fof(x) t...

If `f(1)=2, f\'(x)=f(x)` and `h(x)=fof(x)` then `h\(1)` is equal to (A) `4e` (B) `2e^2` (C) `4e^2` (D) `e^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1)=2,f backslash(x)=f(x) and h(x)=fof(x) then h backslash(1) is equal to (A)4e (B) 2e^(2)(C)4e^(2)(D)e^(2)

If f(1)=3 , f'(1)=2 , then d/(dx) {logf(e^x+2x)} at x=0 is equal to........

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=(e^(x)+e^(-x))/(2) then inverse of f(x) is

If f(x)={x^(2), for x>=1x, for x<0, th e n fof (x) is given by

f(x)=(e^(2x)-1)/(e^(2x)+1) is

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to