Home
Class 12
MATHS
Prove that log a+log a^(2)+loga^(3)+…...

Prove that
`log a+log a^(2)+loga^(3)+….+loga^(n)=(n(n+1))/(2)loga`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that loga+loga^(2)+loga^(3)+….+loga^(n)=(n(n+1))/2loga

Prove that log a+log a^(3)+loga^(5)+….+loga^(2n-1)=n^(2) loga

Prove that log_a x+log_(1/a) x=0

Prove that log_a x=log_(a^2) x^2=log_(a^n) x^n

Prove that log_(a^2) x=(1/2)log_a x

Prove that log_a m+log_(a^2) m^2+log_(a^3) m^3+…..+log_(a^p) m^p=p log_a m

Prove that log_a x.log_b a.log_c b.log_x c=1

Prove that log_a (ab)+log_b (ab)=log_a (ab).log_b (ab)

Prove that (log_ab x)/(log_a x)=1+log_x b

Prove that: (log_a(log_ba))/(log_b(log_ab))=-log_ab