Home
Class 12
MATHS
2xy (dy)/(dx) = x^(2) + 3y^(2)...

`2xy (dy)/(dx) = x^(2) + 3y^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

(dy)/(dx) = (x^(2)+y^(2))/(xy)

y The differential equation of all circles passing through the origin and having their centres on the x-axis is (1)x^(2)=y^(2)+xy(dy)/(dx) (2) x^(2)=y^(2)+3xy(dy)/(dx)y^(2)=x^(2)+3xy(dy)/(dx)y^(2)=x^(2)-2xy(dy)/(dx)

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these