Home
Class 14
MATHS
" If "y=e^(ax)sin bx," then prove that "...

" If "y=e^(ax)sin bx," then prove that "y_(2)-2ay_(1)+(a^(2)+b^(2))y=0" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= e^(ax) sin bx then show that, y_(2)- 2ay_(1) + (a^(2) + b^(2))y= 0

IF y=e^(ax)sin bx , then prove that, (d^2y)/(dx^2)-2ady/dx+(a^2+b^2)y=0

y=e^(ax)sin bx : Prove that y_2-2ay_1+(a^2+b^2)y=0 .

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(ax) sin be then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(ax)sinbx show that y_2-2ay_1+(a^2+b^2)y=0 .

If y=e^(ax)cosbx , then prove that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(ax)cosbx , then prove that : (d^(2)y)/(dx^(2))-2ady/dx+(a^(2)+b^(2))y=0 .

If y=(ax+b)/(cx+d), then prove that 2y_(1)y_(3)=3(y_(2))^(2)

If y= e^(ax) sin(bx), show that y2 - 2ay1 + ( a^2 + b^2 ) y = 0