Home
Class 10
MATHS
Prove that (sintheta-costheta+1)/(sinthe...

Prove that `(sintheta-costheta+1)/(sintheta+costheta-1)=1/(sectheta-tantheta)`, using the identity `sec^2theta=1+tan^2theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sintheta-costheta+1)/(sintheta+costheta-1)=(1)/(sec theta-tan theta). using the identity sec^(2)theta=1+tan^(2)theta .

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tan(theta/2)

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tan(theta/2)

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tantheta/2

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tantheta/2

Prove that (1+sintheta-cos theta)/(1+sin theta+costheta)=tantheta//2

Prove that (1+sintheta-costheta)/(1+sintheta+costheta)="tan"theta/2 .

Prove the following : (sintheta-costheta+1)/(sintheta+costheta-1)=(1)/(sectheta-tantheta) .

Prove that (1/costheta-costheta)(1/sintheta-sintheta)=1/(tantheta+cottheta) .

Prove that (sectheta+tantheta)(1-sintheta)=costheta .