Home
Class 11
MATHS
Show that cos^(2) A + cos^(2)B - 2 cos A...

Show that `cos^(2) A + cos^(2)B - 2 cos A cos B cos (A + B) = sin^(2) (A + B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)A+cos^(2)B-2cos A cos B cos(A+B)=sin^(2)(A+B)

cos^(2) (A-B)+cos^(2)B-2cos(A-B) cos A cos B =

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

If : A+B+C=pi, "then" : 1-cos^(2) A-cos^(2)B-cos^(2)C= A) 2 cos A * cos B * cos C B) 2 sin A * cos B * cos C C) 2 cos A * sin B * cos C D) 2 cos A * cos B * sin C

Prove that cos (A + B) cos (A - B) = cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A

Prove that: sin^(2)A=cos^(2)(A-B)+cos^(2)B-2cos(A-B)cos A cos B

Prove that : sin^2 A=cos^2 (A-B)+ cos^2 B-2 cos (A - B) cos A cos B .