Home
Class 12
MATHS
Let g be the inverse function of a diffe...

Let g be the inverse function of a differentiable function f and `G (x) =(1)/(g (x)).` If `f (4) =2` and `f '(4) =(1)/(16),` then the value of `(G'(2))^(2)` equals to:

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f^(-1) is the inverse function of a differentiable function f and let G(x)=(1)/(f^(-1)(x)) If f(3)=2 and f'(3)=(1)/(9), find G'(2)

Let g(x) be the inverse of the function f(x) and f'(x)=(1)/(1+x^(3)) then g'(x) equals

Let g(x) be the inverse of the function f(x), and f'(x)=1/(1+x^3) then g'(x) equals

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to