Home
Class 11
MATHS
[27" Vector which is perpendicular to "(...

[27" Vector which is perpendicular to "(a cos thetahat i+b sin theta})" is "],[" (a) "b" sin "theta i-a cos thetahat jquad " (b) "(1)/(a)sin thetahat i-(1)/(b)cos theta]],[" (c) "5k]

Promotional Banner

Similar Questions

Explore conceptually related problems

Vectors which is perpendicular to ( a cos theta hat (i) + b sin theta hat(j)) is

(cos theta + i sin theta) ^ (n) = cos n theta + i sin n theta

(cos theta + i sin theta)^3 xx (cos theta-i sin theta)^4=

Area of a triangle whose vertices are (a cos theta, b sin theta) , ( - a sin theta , b cos theta) " and " ( - a cos theta, - b sin theta) is

((cos theta+i sin theta)^(4))/((sin theta+i cos theta)^(5)) is equal to.

((cos theta+i sin theta)^(4))/(((sin theta+i cos theta))^(5)) is equal to

If ((1 + cos theta + i sin theta ) /(i+ sin theta + i cos theta ))= cos ntheta + i sin n theta then n is equal to :

((cos theta-i sin theta)^(4))/((sin theta+i cos theta)^(5)) is equal to

"(cos theta+i sin theta)^(6)(cos theta-i sin theta)^(-3)