Home
Class 12
MATHS
यदि f' (a) विद्यमान है, तब lim(x rarr ...

यदि `f' (a)` विद्यमान है, तब `lim_(x rarr a) (x f (a)-af(x))/(x-a)` बराबर है

Promotional Banner

Similar Questions

Explore conceptually related problems

यदि f' (a) विधमान है तब lim_(x to a) (x f(a)-a f(x))/(x-a)=

lim_(x rarr oo) (1+f(x))^(1/f(x))

lim_(xrarra)(xf(a)-af(x))/(x-a)=f(a)-(a)f'(a) .

lim_(x rarr2)(f(x)-f(2))/(x-2)=

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

It is given that f^(')(a) exists, then lim_(x rarr a) (x f(a) - a f(x))/(x-a) is equal to

f(x) is differentiable function at x=a such that f'(a)=2 , f(a)=4. Find lim_(xrarra) (xf(a)-af(x))/(x-a)

If f is derivable at x =a,then lim_(xto a )( (xf(a) -af( x))/(x-a) )

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is