Home
Class 11
MATHS
[" Let "alpha" and "beta" be the roots o...

[" Let "alpha" and "beta" be the roots of "ax^(2)+bx+c=0],[" then "Lt_(x rarr alpha)(1-cos(ax^(2)+bx+c))/((x-alpha)^(2))=]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be the distinct roots of ax^(2)+bx+c=0," then "underset(x to a)lim (1-cos(ax^(2)+bx+c))/((x-alpha)^(2))

If alpha and beta be the roots of ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))lim is

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 , then lim_(x rarr alpha) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) is equal to :

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

Let alpha and beta be the roots of ax^2 + bx +c =0 , then underset(x to alpha)(lim) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) is equal to :

Let alpha and beta be the roots of ax^2+bx+c=0 Then lim_( x to alpha) (1- cos (ax^2+bx+c))/(x-alpha)^2 is equal to

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

If 'alpha' is a repeated root of ax^(2)+bx+c=0 then Lt_(x to alpha)(tan(ax^(2)+bx+c))/((x-alpha)^(2))=