Home
Class 12
MATHS
The value of the integral int(0)^(3) (dx...

The value of the integral `int_(0)^(3) (dx)/(sqrt(x+1)+sqrt(5x+1))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(3)^(6)(sqrt(x))/(sqrt(9-x)+sqrt(x))dx is

The value of difinite integral int_(0)^(1) (dx)/(sqrt((x+1)^(3)(3x+1))) equals

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

The value of the integral int _(a)^(b) (sqrt(x)dx)/(sqrt(x)+sqrt(1+b-x)) is

The value of difinite integral int_(0)^(1)=(dx)/(sqrt((x+1)^(3)(3x+1))) equals

The value of difinite integral int_(0)^(1)=(dx)/(sqrt((x+1)^(3)(3x+1))) equals

The value of difinite integral int_(0)^(1)=(dx)/(sqrt((x+1)^(3)(3x+1))) equals

The value of the integral int_(0)^(1)(sqrt(x))/(1+x^(2))dx is

int_(0)^(1)(dx)/(sqrt(5x+3))=?