Home
Class 10
MATHS
मान लीजिए p(y)=y^(3)-y^(2)+2 और q(...

मान लीजिए `p(y)=y^(3)-y^(2)+2` और `q(y)=y+1` , तब `p(y)+q(y)` और `p(y)-q(y)` की घाट ज्ञात कीजिए ।

Promotional Banner

Similar Questions

Explore conceptually related problems

If p(y)=y^(6)-3y^(4)+2y^(2)+6 and q(y)=y^(5)-y^(3)+2y^(2)+y-6 , find p(y)+q(y) and p(y)-q(y) .

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) + y^(q) = (x + y)^(p+q) , " then" (dy)/(dx) is

If x^(p)y^(q)=(x+y)^(p+q) , then prove that (dy)/(dx)=(y)/(x) .

If x^p . y^q = (x + y)^(p + q) , show that (dy)/(dx) = y/x

If (p)/(x) +(q)/(y) =m and (q)/(x) +(p)/(y) =n , then what is (x)/(y) equal to ?

{:(2x + 3y = 9),((p + q)x + (2p - q)y = 3(p + q+ 1)):}