Home
Class 12
MATHS
Find the number of 2xx2 matrix satisfyin...

Find the number of `2xx2` matrix satisfying
(i) aij is 1 or -1
(ii) `a_(11)^(2)+a_(12)^(2)=a_(21)^(2)+a_(22)^(2)=2`
(iii) `a_(11)a_(21)+a_(12)a_(22)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be a square matrix of 2x2 satisfyinga.a_(ij)=1 or -1 and a_(11)*a_(21)+a_(12)*a_(22)=0 then the no.of matrix

If (1+x-2x^(2))^(6)=sum_(r=0)^(12)a_(r).x^(r) then a_(1)+a_(3)+......a_(11)

If Delta=|[a_(11), a_(12 ), a_(13)], [a_(21), a_(22), a_(23)],[ a_(31) , a_(32), a_(33)]| and A_(i j) is cofactors of a_(ij) , then value of Delta is given by i) a_(11) A_(31)+a_(12) A_(32)+a_(13) A_(33) ii) a_(11) A_(11)+a_(12) A_(21)+a_(13) A_(31) iii) a_(21) A_(11)+a_(22) A_(12)+a_(23) A_(13) iv) a_(11) A_(11)+a_(21) A_(21)+a_(31) A_(31)

If A=[(a_(11),a_(12)),(a_(21),a_(22))] , then minor of a_(11) (i. e., M_(11)) is

If A=[(a_(11),a_(12)),(a_(21),a_(22))] , then minor of a_(11) (i. e., M_(11)) is

If |(1+a_(1),a_(2),a_(3)),(a_(1),1+a_(2),a_(3)),(a_(1),a_(2),1+a_(3))|=0 then a_(1)+a_(2)+a_(3)=

IF A=[(1,1,0),(2,1,5),(1,2,1)], then a_(11) A_(21) +a_(12)+a_(12)A_(22)+a_(13)A_(23) =

If Delta=|(a_(11), a_(12), a_(13) ),(a_(21), a_(22), a_(23)),(a_(31), a_(32), a_(33))| and A_(i j) is cofactors of a_(i j) , then value of Delta is given by (A) a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33) (B) a_(11)A_(11)+a_(12)A_(21)+a_(13)A_(31) (C) a_(21)A_(11)+a_(22)A_(12)+a_(23)A_(13) (D) a_(11)A_(11)+a_(21)A_(21)+a_(31)A_(31)

IF A=[(1,1,0),(2,1,5),(1,2,1)], then a_(11) A_(21) +a_(12)A_(22)+a_(13)A_(23) =