Home
Class 10
MATHS
the minimum value of 27cosx+81sinx is...

the minimum value of `27cosx+81sinx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The Minimum value of 27^cosx +81^sinx is equal to

The minimum value of 27^(cos3x)81^(sin3x) is

The minimum value of 27^(cos3x)81^(sin3x) is

The minimum value of 3cosx+4sinx+8 is

The Minimum value of 27^(cos x)+81^(sin x) is equal to

The minimum value of 27^(cos 2x)+81^(sin 2x) is

Determine the maximum value of |[cosx sinx], [-sinx cosx-1]| .

Find the maximum & minimum values of 27^(cos2x). 81^(sin2x)

Find the maximum & minimum values of 27^(cos2x). 81^(s in2x)

If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in R , is